Composite Functions

Find an expression for fg(x) for each of these functions:

(a)
$$f(x) = x - 1$$
 and $g(x) = 5 - 2x$

(b)
$$f(x) = 2x^2$$
 and $g(x) = x + 3$

Find an expression for gf(x) for each of these functions:

(a)
$$f(x) = 2x + 1$$
 and $g(x) = 4x + 3$

(b)
$$f(x) = \frac{3}{x}$$
 and $g(x) = 2x - 1$

The function f is such that f(x) = 2x - 3

- (i) Find ff(2)
- (ii) Solve the equation ff(x) = x

Functions f and g are such that

$$f(x) = x^2$$
 and $g(x) = 5 + x$

- (a) Find (i) fg(x) (ii) gf(x)
- (b) Solve fg(x) = gf(x)

The function g is such that

$$g(x) = \frac{1}{1-x}$$
 for $x \neq 1$

- (a) Prove that $gg(x) = \frac{x-1}{x}$
- (b) Find ggg(3)

Functions f, g and h are such that

$$f(x) = 3 - x$$

$$g(x) = x^2 - 14$$
 and

$$h(x) = x - 2$$

Given that f(x) = gfh(x), find the values of x.

Composite Functions

Find an expression for fg(x) for each of these functions:

(a)
$$f(x) = x - 1$$
 and $g(x) = 5 - 2x$

(b)
$$f(x) = 2x^2$$
 and $g(x) = x + 3$

Find an expression for gf(x) for each of these functions:

(a)
$$f(x) = 2x + 1$$
 and $g(x) = 4x + 3$

(b)
$$f(x) = \frac{3}{x}$$
 and $g(x) = 2x - 1$

The function f is such that f(x) = 2x - 3

- (i) Find ff(2)
- (ii) Solve the equation ff(x) = x

Functions f and g are such that

$$f(x) = x^2$$
 and $g(x) = 5 + x$

- (a) Find (i) fg(x) (ii) gf(x)
- (b) Solve fg(x) = gf(x)

The function g is such that

$$g(x) = \frac{1}{1-x}$$
 for $x \neq 1$

- (a) Prove that $gg(x) = \frac{x-1}{x}$
- (b) Find ggg(3)

Functions f, g and h are such that

$$f(x) = 3 - x$$

$$g(x) = x^2 - 14$$
 and

$$h(x) = x - 2$$

Given that f(x) = gfh(x), find the values of x.