Equating Coefficients in Vectors

Find the values of λ and μ by equating coefficients of \boldsymbol{a} and \boldsymbol{b} .

(a)
$$4\mathbf{a} + \lambda \mathbf{b} = \mu \mathbf{a} + 6\mathbf{b}$$

(b)
$$\lambda a - 5b = -2a + \mu b$$

(c)
$$\lambda a + \mu b = 2a + 6b + 3a - 3b$$

(d)
$$-3\boldsymbol{a} + \lambda \boldsymbol{b} = 2\boldsymbol{a} - \boldsymbol{b} + \mu \boldsymbol{a} + 5\boldsymbol{b}$$

(e)
$$2(2\mathbf{a} - \mu \mathbf{b}) + 3\mathbf{a} + 10\mathbf{b} = \lambda \mathbf{a} + 6\mathbf{b}$$

In the vector diagrams shown, find the values of λ and $\mu.$

(a)

(b)

In the vector diagrams shown, find the values of λ and μ .

(a)

(b)

Equating Coefficients in Vectors

Find the values of λ and μ by equating coefficients of \boldsymbol{a} and \boldsymbol{b} .

(a)
$$4\mathbf{a} + \lambda \mathbf{b} = \mu \mathbf{a} + 6\mathbf{b}$$

(b)
$$\lambda a - 5b = -2a + \mu b$$

(c)
$$\lambda a + \mu b = 2a + 6b + 3a - 3b$$

(d)
$$-3a + \lambda b = 2a - b + \mu a + 5b$$

(e)
$$2(2\mathbf{a} - \mu\mathbf{b}) + 3\mathbf{a} + 10\mathbf{b} = \lambda\mathbf{a} + 6\mathbf{b}$$

In the vector diagrams shown, find the values of λ and μ .

(a)

(b)

In the vector diagrams shown, find the values of λ and μ .

(a)

(b)

