| Harder Coordinate Geometry | | | |---|---|--| | (a) | (b) | (c) | | Find an equation of the line that passes through the points $(4,2)$ and $(-8,11)$. Give your answer in the form $ax + by = c$ where a , b and c are integers. $3x + 4y = 20$ | The straight line L has equation $5x-3y=18$. Find an equation of the line that is parallel to L and crosses the x -axis at $(4,0)$. $y=\frac{5}{3}x-\frac{20}{3}$ | The straight line L_1 has equation $x+2y-7=0$. The straight line L_2 passes through the points $(-2,-6)$ and $(5,8)$. Show that the lines L_1 and L_2 are perpendicular to each other. $m \ for \ L_1 = -\frac{1}{2} \qquad m \ for \ L_2 = 2$ $-\frac{1}{2} \times 2 = -1, \ therefore \ perpendicular$ | | (d) | (e) | (f) | | The straight line L passes through the points $(1,-1)$ and $(5,9)$. Find an equation of the line that is parallel to L and passes through the point $(2,4)$. Give your answer in the form $ax + by + c = 0$ where a , b and c are integers. $5x - 2y - 2 = 0$ | The straight line L_1 has equation $2x-3y=4$. The straight line L_2 is perpendicular to L_1 and passes through the point $(1,2)$. Find the equation of the line L_2 and the coordinates of the point where it crosses the x -axis. $y=-\frac{3}{2}x+\frac{7}{2}$ $\left(\frac{7}{3},0\right)$ | ABC is a triangle, where $\widehat{BAC}=90^\circ$. The point C has coordinates $(9,5)$ and points A and B lie on the line with equation $2x+3y=7$. Find the equation of the line that passes through A and C , giving your answer in the form $ax+by=c$ where a , b and c are integers. $3x-2y=17$ |