Finding the Length of the Hypotenuse using Pythagoras' Theorem

(a) Find x to 1 decimal place

$$x^{2} = 5^{2} + 8^{2}$$

$$x^{2} = 89$$

$$x = \sqrt{89}$$

$$x = 9.4 cm (1 dp)$$

(b) Find x

$$x^{2} = 5^{2} + 12^{2}$$

$$x^{2} = 169$$

$$x = \sqrt{169}$$

$$x = 13 cm$$

(c) Find y to 1 decimal place

$$y^{2} = 12^{2} + 14^{2}$$

$$y^{2} = 340$$

$$y = \sqrt{340}$$

$$y = 18.4 \ mm \ (1 \ dp)$$

(d) Find x

$$x^{2} = 8^{2} + 15^{2}$$

$$x^{2} = 289$$

$$x = \sqrt{289}$$

$$x = 17 m$$

(e) Find y to 1 decimal place

$$y^{2} = 1.6^{2} + 1.3^{2}$$
$$y^{2} = 4.25$$
$$y = \sqrt{4.25}$$
$$y = 2.1 cm (1 dp)$$

(f) Find x to 1 decimal place

$$\begin{cases} x^2 = 22^2 + 35^2 \\ x^2 = 1709 \\ x = \sqrt{1709} \\ x = 41.3 \ mm \ (1 \ dp) \end{cases}$$

(g) Find x to 1 decimal place

$$x^{2} = 5.7^{2} + 8.9^{2}$$

$$x^{2} = 111.7$$

$$x = \sqrt{111.7}$$

$$x = 10.6cm (1 dp)$$

(h) Find *y*

$$y^{2} = 5^{2} + 12^{2}$$

$$y^{2} = 6.25$$

$$y = \sqrt{6.25}$$

$$y = 2.5 cm$$

(i) Find y to 1 decimal place

$$y^{2} = 21^{2} + 21^{2}$$

 $y^{2} = 882$
 $y = \sqrt{882}$
 $y = 29.7 mm (1 dp)$

(i) Find x, leaving your answer as a surd

$$x^{2} = 2^{2} + 3^{2}$$
$$x^{2} = 13$$
$$x = \sqrt{13} cm$$

(k) Find y, leaving your answer as a surd

$$y^2 = 2^2 + 5^2$$
$$y^2 = 29$$
$$y = \sqrt{29} m$$

(I) Find x, leaving your answer as a surd

$$x^{2} = 5^{2} + 5^{2}$$

$$x^{2} = 50$$

$$x = \sqrt{50} cm$$

$$or x = 5\sqrt{2} cm$$