Parallel and Perpendicular Lines

Find the equation of the line that has:

- (a) Gradient 2 and goes through (0, 5)
- **(b)** Gradient -3 and goes through (0, 7)
- (c) Gradient $\frac{2}{3}$ and goes through (0, 4)
- (d) Gradient -4 and goes through (0, -1)
- (e) Gradient 1 and goes through (0, -6)

Find the equation of the line that is:

- (a) Parallel to the line y = 4x + 7 and passes through (0, 2)
- **(b)** Parallel to the line y = -2x + 4 and passes through (0, 6)
- (c) Parallel to the line y = 3x + 1 and passes through (0, -4)
- (d) Parallel to the line y = x + 6 and passes through (0, 5)
- (e) Parallel to the line $y = \frac{1}{2}x + 3$ and passes through (0, -1)

Find the equation of the line that is:

- (a) Perpendicular to the line y = 2x + 5 and passes through (0, 7)
- **(b)** Perpendicular to the line $y = \frac{1}{3}x + 4$ and passes through (0, -5)
- (c) Perpendicular to the line y = -5x + 1 and passes through (0, 2)
- (d) Perpendicular to the line $y = -\frac{1}{4}x + 5$ and passes through (0, -4)
- (e) Perpendicular to the line y = 3x 1 and passes through (0, 3)

Match the pairs of perpendicular lines.

$$x = 6$$
 $x + y = 5$ $y = 8x - 9$
 $2y = x + 4$ $2x + y = 9$ $y = -\frac{1}{8}x + 6$
 $5y = 2x + 15$ $y = 0.1x + 2$ $y = -2$
 $y = 33 - 10x$ $2y + 5x = 2$ $y = x + 4$

Parallel and Perpendicular Lines

Find the equation of the line that has:

- (a) Gradient 2 and goes through (0, 5)
- **(b)** Gradient -3 and goes through (0, 7)
- (c) Gradient $\frac{2}{3}$ and goes through (0, 4)
- (d) Gradient -4 and goes through (0, -1)
- (e) Gradient 1 and goes through (0, -6)

Find the equation of the line that is:

- (a) Parallel to the line y = 4x + 7 and passes through (0, 2)
- **(b)** Parallel to the line y = -2x + 4 and passes through (0, 6)
- (c) Parallel to the line y = 3x + 1 and passes through (0, -4)
- (d) Parallel to the line y = x + 6 and passes through (0, 5)
- (e) Parallel to the line $y = \frac{1}{2}x + 3$ and passes through (0, -1)

Find the equation of the line that is:

- (a) Perpendicular to the line y = 2x + 5 and passes through (0, 7)
- **(b)** Perpendicular to the line $y = \frac{1}{3}x + 4$ and passes through (0, -5)
- (c) Perpendicular to the line y = -5x + 1 and passes through (0, 2)
- (d) Perpendicular to the line $y = -\frac{1}{4}x + 5$ and passes through (0, -4)
- (e) Perpendicular to the line y = 3x 1 and passes through (0, 3)

Match the pairs of perpendicular lines.

$$x = 6 x + y = 5 y = 8x - 9$$

$$2y = x + 4 2x + y = 9 y = -\frac{1}{8}x + 6$$

$$5y = 2x + 15 y = 0.1x + 2 y = -2$$

$$y = 33 - 10x 2y + 5x = 2 y = x + 4$$