Motion of a Particle

(a) The distance s of a particle at time t is given by $s=5t^2+8t+3$. Find an expression for the velocity v of the particle, and the velocity after 6 seconds. (b) The distance s of a particle at time t is given by $s=t^3+2t^2+10t-3$. Find an expression for the velocity v of the particle, and the velocity after 2 seconds.

(a)
$$V = 10E + 8$$

 $V = 68 \text{ m/s}$
(b) $V = 3E^2 + 4E + 10$
 $V = 30 \text{ m/s}$

(a) The distance s of a particle at time t is given by $s=0.5t^3-0.1t^2$. Find expressions for the velocity v and acceleration a of the particle. Find the acceleration after 4 seconds.

(b) The distance s of a particle at time t is given by $s=5t+3t^2+t^3$. Find expressions for the velocity v and acceleration a of the particle. Find the acceleration after 0.5 seconds.

(a)
$$V = 1.5t^2 - 0.2t$$

 $a = 3t - 0.2$
 $a = 11.8m | 6^2$

(b) $V = 5 + 6t + 3t^2$ a = 6 + 6t $a = 9m | 5^2$

(a) The distance
$$s$$
 of a particle at time t is given by $s=2t^2-6t$. Find the time at which the velocity is instantaneously zero.

(b) The distance s of a particle at time t is given by $s=2t^3-15t^2+9t$. Find the time at which the acceleration is instantaneously zero.

(a)
$$v = 4t - 6$$

when $v = 0$ $t = 1.55$

(b)
$$v = 6t^2 - 30t + 9$$

 $a = 12t - 30$
when $a = 0 t = 2.5 sec$.

A particle travels in a straight line where the distance from the origin O is given by
$$s=2t^2-\frac{3}{t}$$
. Find the velocity and acceleration of the particle after 5 seconds.

$$V = 4L + \frac{3}{L^2} \quad a = 4 - \frac{6}{L^3}$$

 $V = 20.12m/5$
 $a = 3.952m/5^2$