## **Vector Proof - Collinear Points**

# (a)

OACB is a parallelogram.  $\overrightarrow{OA} = 3\boldsymbol{a}$  and  $\overrightarrow{AC} = 3\boldsymbol{b}$ . Y is the midpoint of OB and X divides the line OC in the ratio 1:2. Show that the points A,X and Y are collinear.



$$\overrightarrow{AY} = -3\boldsymbol{a} + \frac{3}{2}\boldsymbol{b}$$

$$\overrightarrow{AX} = -3\mathbf{a} + \mathbf{a} + \mathbf{b} = -2\mathbf{a} + \mathbf{b}$$

Since  $\overrightarrow{AY}$  is a multiple of  $\overrightarrow{AX}$  they are parallel, and there is a common point A, the points A, X and Y are collinear.

# (b)

 $\overrightarrow{OACB}$  is a trapezium.  $\overrightarrow{OA} = \boldsymbol{a}$  and  $\overrightarrow{AB} = \boldsymbol{b}$ .  $\overrightarrow{OC} = 3\overrightarrow{AB}$  and X divides the line OB in the ratio 3:1. Show that the points A,X and C are collinear.

$$\overrightarrow{AC} = -\mathbf{a} + 3\mathbf{b}$$

$$\overrightarrow{AX} = -\mathbf{a} + \frac{3}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$$

$$\overrightarrow{AX} = -\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$$

$$\overrightarrow{AC} = 4\overrightarrow{AX}$$



Since  $\overrightarrow{AC}$  is a multiple of  $\overrightarrow{AX}$  they are parallel, and there is a common point A, the points A, X and C are collinear.

## (c)

In the triangle  $\overrightarrow{OAB}$ ,  $\overrightarrow{OX} = \boldsymbol{a}$  and  $\overrightarrow{AB} = \boldsymbol{b}$ . X is the midpoint of OA and the point Y divides the line AB in the ratio 2: 1.



 $\overrightarrow{OB} = \overrightarrow{BC}$ . Show that the points X, Y and C are collinear.

$$\overrightarrow{XC} = 3\mathbf{a} + 2\mathbf{b}$$

$$\overrightarrow{XY} = \mathbf{a} + \frac{2}{3}\mathbf{b}$$

$$\overrightarrow{XC} = 3\overrightarrow{XY}$$

Since  $\overrightarrow{XC}$  is a multiple of  $\overrightarrow{XY}$  they are parallel, and there is a common point X, the points X, Y and C are collinear.

# (d)

 $\overrightarrow{OA} = 4\boldsymbol{a} - \boldsymbol{b}$ ,  $\overrightarrow{AB} = \boldsymbol{a} + 2\boldsymbol{b}$  and  $\overrightarrow{OC} = \boldsymbol{a} + \boldsymbol{b}$ .  $\overrightarrow{AB} = \overrightarrow{BD}$ . The point X divides the line AC in the ratio 6: 1. Show that O, X and D are collinear.

$$\overrightarrow{OD} = 6\mathbf{a} + 3\mathbf{b}$$

$$\overrightarrow{OX} = \frac{10}{7}\mathbf{a} + \frac{5}{7}\mathbf{b}$$

$$\overrightarrow{OD} = \frac{21}{5}\overrightarrow{OX}$$

Since  $\overrightarrow{OD}$  is a multiple of  $\overrightarrow{OX}$  they are parallel, and



there is a common point O, the points O, X and D are collinear.