Volume of Cylinders, Cones and Spheres

Volume of Cone = $\frac{1}{3}\pi r^2 h$

Volume of Cylinder = $\pi r^2 h$

Volume of Sphere = $\frac{4}{3}\pi r^3$

(a)

Find the volume, giving your answer in

terms of π

 540π cm³

(b)

Find the volume, giving your answer to

answer to the nearest cm³

 3054 cm^3

(c)

Find the volume, giving your answer to 3

significant figures

 $\begin{array}{c} 302000 \\ mm^3 \end{array}$

(d)

Find the volume, giving your answer to 3

answer to 3 significant figures

 1340 cm^3

(e)

Find the volume, giving your answer to 2

 0.85 m^3

decimal places

(f)

Find the volume, leaving your answer

in terms of π

 $7776\pi \text{ mm}^3$

(g)

Find the volume of the hemisphere to the nearest cm³

 718 cm^3

(h)

The cone has a volume of

(k)

 $39\pi \text{ cm}^3$. Find the height h.

13 cm

(i)

The cylinder has a volume of 6100 mm². Find

6100 mm². Find its radius to the nearest mm.

9 mm

(j)

A shape is made by joining a hemisphere to a cylinder. Both have a radius of 6.5 cm. Find the total volume of the shape.

 2433 cm^3

A shape is made by joining a cone to a hemisphere, where both shapes have the same radius. The total volume is $402\pi~{\rm cm}^3$. Find the height of the cone.

21.5 cm

