(a)

ABCD is a parallelogram.

$$\overrightarrow{AB} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
 and $\overrightarrow{AD} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$

Given that the coordinates of A are (3,1), find the coordinates of points B, C and D.

(c)

ABCD is a parallelogram. $\overrightarrow{BC} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

The coordinates of A are (2,7) and of B are (8,3). Find the coordinates of C and D, and the vector \overrightarrow{DC} .

Vectors and Coordinates

(e)

 \overrightarrow{ABCD} is a trapezium. $\overrightarrow{AB} = 2\overrightarrow{DC}$.

$$\overrightarrow{DC} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 and $\overrightarrow{BC} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$

The coordinates of D are (2,8). Find the coordinates of A, and the vector \overrightarrow{AD} .

(b)

ABCD is a parallelogram.

$$\overrightarrow{AD} = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$$
 and $\overrightarrow{DC} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$

Given that the coordinates of A are (0,1), find the coordinates of points B, C and D.

(d)

ABCD is a rhombus. $\overrightarrow{CB} = \begin{pmatrix} -3 \\ -4 \end{pmatrix}$

The coordinates of A are (-1,4) and of B are (3,1). Find the coordinates of C and D, and the vector \overrightarrow{DC} .

(f)

ABCDEF is a regular hexagon.

$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
 and $\overrightarrow{FE} = \begin{pmatrix} 2 \\ 2\sqrt{3} \end{pmatrix}$

 $\overrightarrow{FC} = 2\overrightarrow{AB}$. The coordinates of A are (5,2). Find the coordinates of B, C and D.

